
Standard Form: $y = ax^2 + bx + c$ Vertex Form: $y = a(x - h)^2 + k$

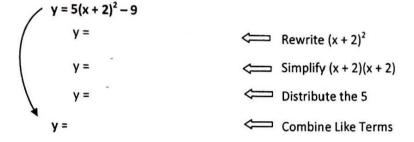
Convert from Standard Form to Vertex Form:

$$y = ax^{2} + bx = c \qquad \Longrightarrow \qquad y = a(x-h)^{2} + k$$
know a, b, c want a, h, k
$$a = a$$

$$x = \frac{-b}{2a} = h$$
Solve for y = k

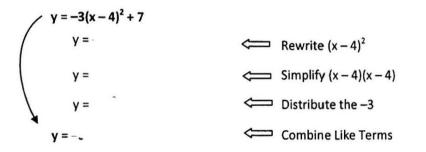
Substitute the values and rewrite.

Example 2:
$$y = 5x^2 - 40x + 67$$
We know a, b, c and want a, h, k $a =$ a is the coefficient of the x^2 term $h = x = \frac{-b}{2a} =$ a use the formula to find the value of h $k = y = 2$ a substitute the value found for h into the original equation and solve for k


Practice: Convert the following quadratics from standard to vertex form.

1.
$$y = 5x^2 - 10x + 37$$

2. $y = 7x^2 + 28x + 19$
3. $y = -2x^2 - 24x - 75$


Convert from Vertex Form to Standard Form:

$$y = a(x - h)^2 + k \implies y = ax^2 + bx = c$$

Example 1:

Example 2:

Practice: Convert the following quadratics from vertex to standard form.

1. $y = (x-2)^2 + 6$ 2. $y = 3(x-3)^2 - 12$ 3. $y = -2(x+1)^2 + 3$