Nam	ne:KEY							
	Unit 4: Expon	ential Fun	ctions N	Mock Tes	st			
2.	expected to depreciate at an average a) Is this a growth or decay model? _ b) Write an algebraic equation that model c) Fill in the table's values for the value the nearest hundredth) d) What will the value of the equipment be in 10 years?	y interce etermines en the rate ()) n word prob s bought a p of 10% per decay odels the situ	olems? plems? piece of year. Uation: pment fo	weaving	equipmen	t for \$60,0	000. It is ecimals to)
	y= 60,000 (110) = 20,920.71							
3.	The population of termites in Mrs. Woodley the number of termites will <u>quadruple</u> eve					Mrs. Wood	dley that	
	a) Is this a growth or decay model?b) Fill in the table values for the expected		f termites	for the firs	st 4 weeks.	(Round t	to the	
	nearest whole number)	Week	0	1	2	3	4	

y= 200 (4)

Week	0	1	2	3	4
# of	200	800	2300	12.800	51,200
termites	0,00	000	3400	141000	0.10

e) How many termites can Mrs. Woodley expect at the end of 9 weeks?

Miles bought a new boat for \$20,000 in 2000. The value of the boat depreciates 8.5% every year. What would the value of Miles' boat in 2009? (Let 2000 be year 0.)

5. State the translation that takes place from $f(x) = 3^x$ to each of the following.

$$g(x) = 3^{x} + 8$$

$$up 8$$

$$right 5, down 5$$

$$up 1$$
6. If the function $f(x) = 4^{x}$ is translated up 6 and left 2, write the new function, $g(x) = 3^{x-4}$

$$g(x) = 3^{x-4} + 1$$

$$up 1$$
6. If the function $f(x) = 4^{x}$ is translated up 6 and left 2, write the new function, $g(x)$.
$$g(x) = \frac{1}{4} \frac{x+3}{4} + \frac{1}{6}$$
7. If the function $f(x) = 1.5^{x}$ is translated down 4 and left 5, write the new function, $h(x)$.

$$h(X) = 1.5^{X+5} - 4$$

Determine if the function is growth or decay, and then identify the following:

8.
$$g(x) = 14(0.99)^x$$

Growth or Decay

Initial: 14

Factor: .99

Rate: 1 %

10.
$$f(x) = \frac{1}{4}(8)^x$$

Growth or Decay

Initial: 4

Factor: 8

Rate: 700%

$$9. h(x) = \left(\frac{3}{4}\right)^x$$

Growth or Decay

Initial:

Factor: $\frac{3}{4}$

Rate: 25%

11. $g(x) = 4(1.34)^x$

 $(1-\frac{3}{4})$

Growth or Decay

Initial: 4

Factor: 1.34

Rate: 34%

Solve the following Exponential Functions:

12.
$$25^{x-2} = \frac{1}{5}$$

$$5^{3(x-3)} = 5^{-1}$$

$$2x - 4 = -1$$

$$4x - 4 = -1$$

$$2x = \frac{3}{3}$$

14.
$$2^{x-1} \cdot 4^{-1} = 1$$

$$2^{x-1} \cdot 2^{x-1} = 2^{0}$$

$$2^{x-1} \cdot 2^{-2} = 2^{0}$$

$$2^{x-1} \cdot 2^{-2} = 2^{0}$$

$$2^{x-1-2} = 2^{$$

4x-2=3

HX = 5

13.
$$27^{-x+3} \cdot 9^{x+1} = 81$$

$$3^{3(-X+3)} \cdot 3^{2(X+1)} = 3^{4}$$

$$3^{-3X+9} \cdot 3^{2X+2} = 3^{4}$$

$$3^{-3X+9+2X+2} = 3^{4}$$

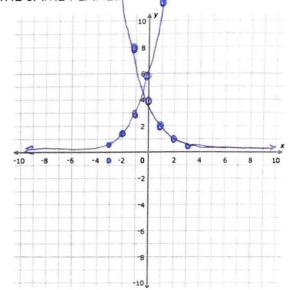
$$3^{-X+11} = 3^{4}$$

$$X = -7$$

15.
$$\frac{7^{x-3}}{49^{x-3}} = 7$$

$$\frac{7^{x-3}}{7^{2}(x-3)} = 7^{1}$$

$$\frac{7^{x-3}}{7^{x-3}} = 7^{x-3}$$


$$\frac{7^{x-3}}{7^{x-3}} = 7^{x-3}$$

$$\frac{7^{x-3}}{7^{x-3}} = 7^{x-3}$$

$$\frac{7^{x-3}}{7$$

18. Complete the table for the functions and then graph it ON THE SAME PLANE $y = 6(2)^{x}$ $y = b(2)^{-3}$ $y = b(2)^{-3}$ $y = b(2)^{-2}$ $y = b(2)^{-2}$

,	4	2	3	6	12	24	48
v = 41	11x y=	4(3)	-3	y= 41	$\left(\frac{1}{3}\right)^{-2}$	y=	4 (=)-1 = 4(a)
y = 4(2) y=	4(8,)	y = L	+(4)	9	= 4(a)
X	-3	-2	-1	0	1	2	3
У	33	16	8	4	2		12

19. Write an exponential function that models the points in the table.

x	У
1	50
2	7.5
3	1.125
4	0.16875

Factor: .15

Initial amount: 333.3

Rate (%) 85%

		1	X
	223	(.15)	
Equation: y=	333	(.,)	

x	У
1	2
2	8
3	32
4	128

Factor: 4

Initial amount: $\frac{1}{2}$

Rate (%): 300 %

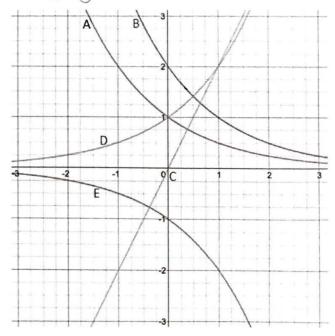
Equation:
$$y = \frac{1}{2} (4)^{X}$$

20. What is an **asymptote**, and how can you find the asymptote in **both** the parent function $f(x) = b^x$ and in the transformed function $g(x) = ab^{x-h} + k$?

an asymptote is a horizontal line your function gets close to but never crosses. In a parent function the asymptote is always y=0 and in the transformed

function, K represents the asymptote

Write the equation of the graph that corresponds to each equation.


$$21. y = 2\left(\frac{1}{2}\right)^x$$

22.
$$y = \left(\frac{1}{2}\right)^x$$

23.
$$y = 2^x$$

24.
$$y = -2^x = \sum_{i=1}^{n} (x_i - x_i)^n$$

25.
$$y = 2x$$

Answer the following about Geometric Sequences:

26. Find the formula for the nth term of the following geometric sequence: $3, 9, 27, 81, \dots$

27. Find the formula for the nth term of the following geometric sequence: -2, 10, -50, 250, ...

- 28. Lidia's parents have offered her two different options to earn her allowance for a 9-week period over the summer. She can either get paid \$30 each week, or \$1the first week, \$2 the second week, \$4 the third week, and so on.
 - a) Clearly explain if the second option forms a geometric sequence or not.

b) Show work and explain which option Lidia should choose.

$$y = 30x$$
 $x y$ $y = 2^{x-1}$
 $y = 30(9)$ 2 2 $y = 3^{9-1}$
 $y = 4^{3}$
This option earns $y = 4^{3}$
Her more money $y = 4^{3}$

29. Find the common ratio for the following sequence, and then find the tenth term: 7, -7, 7, -7, ...

$$r = -1$$
 $a_{10} = 7 \cdot (-1)^{10-1}$ $a_{10} = -7$

30. The fourth term for a sequence is 54, and the common ratio is -3. Use the information to find the eighth term. (Hint: You will need to find A₁ first.)

$$\begin{array}{r}
 04 = 54 \\
 \hline
 04 = 54 \\
 \hline
 04 = 0.0 (-3)^{4-1}
 \end{array}$$
 $\begin{array}{r}
 08 = -2.0 (-3)^{8-1} \\
 \hline
 08 = -2.0 (-2187)
 \end{array}$
 $\begin{array}{r}
 -27 \\
 \hline
 -27 \\
 \hline
 -27 \\
 \hline
 -27
 \end{array}$
 $\begin{array}{r}
 08 = 4.374
 \end{array}$