Notes: Function Notation

The equation $\mathrm{y}=9-4 \mathrm{x}$ represents a function.
You can use the letter f to name this function and then use function notation to express it. Just replace y with $f(x)$. (Note: In function notation, the parentheses do not mean multiplication.)

You read $f(x)$ as " f of x," which means "the output value of the function f for the input value x."

Example: Find $f(2)$. What output do you get when you input 2?

$$
\begin{array}{ll}
f(2)=9-4(2) & \text { When you input } 2 \text { into } \\
f(2)=1 & \text { function } f \text { the output is } 1 .
\end{array}
$$

Evaluating Functions Using Function Notation

Ex. 1: Given $f(x)=7 x-1$, find $f(-2)$.

Ex. 3: Given $h(x)=5 x-1$, find x if $h(x)=9$

Ex. 2: Given $g(x)=x^{2}-4$, find $g(-5)$.

Ex. 4: Given $f(x)=-x+2$, find x if $f(x)=6$

Let's Practice!

Evaluate the following expressions given the functions below:
$f(x)=x^{2}+7$
$g(x)=-3 x+1$
$h(x)=\frac{12}{x}$
$j(x)=2 x+9$
a. $g(10)=$
b. $f(3)=$
c. $h(-2)=$
d. $j(7 / 4)=$
e. $h(a)$
f. Find x if $g(x)=16$
g. Find x if $\mathrm{h}(\mathrm{x})=-2$
h. Find x if $f(x)=23$

Not all functions are expressed as equations. Here is a graph of a function g. The equation is not given, but you can still use function notation to express the outputs for various inputs.
Examples:

1. $g(0)=$ \qquad 2. $g(4)=$
2. $g(6)=$
3. Can you find x-values for which $g(x)=3$? \qquad

4. $f(x)=6$, what is x ? \qquad
5. $f(x)=0$, what is x ? \qquad
6. What is the domain of the function? \qquad 8. Range? \qquad

You Try: Use the graph of $\boldsymbol{y}=f(x)$ at the right to answer each question.
a) $f(4)=$
b) $f(6)=$
c) For what x value(s) does $f(x)=2$?
d) For what x value(s) does $f(x)=1$?
e) How many x-values make the statement $f(x)=0.5$ true?
f) For what x-values is $f(x)$ greater than 2?
g) What are the domain and range shown on the graph?

