

Name	_ Date	_ Period	Teacher
	What are sequ	iences?	
	l		
At the • beginning	At the		At the beginning
After I ● ● ●		••	After I minute
After 2 minutes	After I		After 2 minutes
After 3 minutes	After 2 minutes	•• •• ••	After 3 minutes
Write the terms in the sequence.	Write the terms in t	he sequence.	Write the terms in the sequence.
How would you find the next term?	How would you find t	, he next term?	Liow would you find the next term?

Geometric Sequences			
What is a geometric sequence?	What is a common ratio?		

Swing Problem

Samantha's dad gives her a push on the swing. At her highest point, she is 5ft off of the ground. If he does not give her another push, each progressive swing will be 85% of the height of the previous swing. How would you find the height of the next three swings? Use this information to write a formula for the 10th swing.

Finding the Height of Each Swing			
# of Swings	Height of Swing		
1	<i>a</i> ₁ = 5		
2	<i>a</i> ₂ =		
3	<i>a</i> ₃ =		
4	$a_4 =$		
10	$a_{10} =$		

Name <u>KEY</u>	Date	Period	Teacher			
	What are sequences?					
They a	are a string of object	s that follow a particu	lar pattern.			
At the • beginning	At the beginning		At the beginning			
After I ● ● ●		•• ••	After I minute ●● ●●			
After 2 minutes	After I minute		After 2 minutes			
After 3 minutes	After 2minutes	• • • • • •	After 3 minutes			
Write the terms in the sequence 1, 3, 9, 27 How would you find the next term Multiply the last term by 3	e. Write the ten 41 n? How would you Multiply t	ms in the sequence. 0, 20, 10 1 find the next term? he last term by $\frac{1}{2}$	Write the terms in the sequence. 3, 6, 12, 24 How would you find the next term? Multiply the last term by 2			

Geometric Sequences				
What is a geometric sequence?	What is a common ratio?			
A sequence in which each term after the first is found by multiplying the previous term by a constant called the common ratio.	The constant that is multiplied by each term in a geometric sequence in order to find the next term.			

Swing Problem

Samantha's dad gives her a push on the swing. At her highest point, she is 5ft off of the ground. If he does not give her another push, each progressive swing will be 85% of the height of the previous swing. How would you find the height of the next three swings? Use this information to write a formula for the 10th swing.

Finding the Height of Each Swing			
# of Swings	Height of Swing		
1	<i>a</i> ₁ = 5		
2	$a_2 = 5(0.85)$		
3	$a_3 = 5(0.85)(0.85)$		
4	$a_4 = 5(0.85)(0.85)(0.85)$		
10	$a_{10} = 5(0.85)^{10-1}$		

Name	Date	Period	Teach	er		
Revisiting Our Geometric Sequences Determine the common ratio for each sequence. Then, find the next term.						
1, 3, 9, 27,	common	ratio (r) =	next te	rm =		
40, 20, 10,	common	ratio (r) =	next te	rm =		
3, 6, 12, 24,	common	ratio (r) =	next te	rm =		
	Geometric Sequences:	Finding the N	lext Terms			
Step I: Find the common ratio (r) by dividing a term in the geometric sequence by its preceding term. Step 2: Multiply the common ratio (r) by the term at the end of the sequence. Continue until you have the desired amount of terms.	Find the next 2 terms in the 324 108 36 What is the common ratio The next 2 numbers in the sequ	sequence. (r)? ence are	Find the ne: —3 What it The next 3 n	xt 3 terms — 15 s the comr umbers in _ ,,	s in the second — 75 mon ratio (i the seque and	equence. r)? nce are
 Th	Geometric Sequences: Finding the nth Term The formula for finding the nth term in a geometric sequence is $a_1 = a_2 \cdot x^{n-1}$					
Step 1: Find the common ratio (r) by dividing a	Assuming that the geometric continues, what is the height of a	sequence bouncing ball	Assuming t	hat the ge ow many b	ometric se acteria will	equence be in the
term in the geometric sequence by its	on the 9 ⁱⁿ bounce?			e ar the en	d of 7 hou	rsir
preceding term.	Height 3 1.8	1.08	Bacteria	250	500	1000
given values and the common ratio into the	Find the values for each varia formula.	Find the values for each variable in the formula.			e in the	
	$a_1 = n = r =$ r = Use the formula for finding the geometric sequence to fi	nth term in a nd a_9 .	$a_1 = n = r =$ r = Use the formageometry	ula for finc tric sequer	ling the nth nce to finc	n term in an 1 a ₇ .

Name	<u>KEY</u>	Dat	te		_ Perioc	ł	T e ache	er		
Revisiting Our Geometric Sequences Determine the common ratio for each sequence. Then, find the next term.										
	1, 3, 9, 1	27,		com	mon ratio	(r)	= 3 next to	erm = <mark>8</mark> 1	L	
	40,20	, 10,		con	nmon rati	o (I	r) = $\frac{1}{2}$ next 1	term = 5		
	3, 6, 12	2,24,		com	mon ratic) (r)) = 2 next te	erm = 48	}	
		Geometric	: Sequen	ices: Fir	nding the	Ne	ext Terms			
Step I: Find the or ratio (r) by dividi term in the geor sequence by its preceding term.	common ing a metric	Find the next 324 What is t	2 terms 1 108 the commo	in the se 36 on ratio (rj	quence.)?		Find the nex —3 What is	kt 3 terms — 15 s the comr	s in the se — 75 mon ratio (r	>quence . ; r)?
Step 2: Multiply t common ratio (r) term at the end sequence. Conti you have the de amount of terms	the) by the of the inue until esired s.	$r = \frac{108}{324} = \frac{1}{3}$ The next 2 numbers in the sequence are 12 and 4				$r = \frac{(-15)}{(-3)} = 5$ The next 3 numbers in the sequence are $-375, -1,875, \text{ and } -9,375$				
		Geometr	ic Seque	ences: F	inding the	e n	th T e rm			
	The	e formula for fi	inding the	e nth te	rm in a ge	eon	netric seque	ence is		
the nth term in the sequence $a_n = a_1 \cdot r^n - 1$ the position in the sequence the first number in the sequence ratio										
Step I: Find the $ratio (r)$ by dividing term in the geor	common ing a metric	Assuming that continues, what is on	Assuming that the geometric sequence continues, what is the height of a bouncing ball on the 9 th bounce?				Assuming th continues, ho culture	hat the ge ow many be at the end	ometric se acteria will d of 7 hou	quence be in the rs?
preceding term.)	# of Bounces	1	2	3		Hour(s)	1	2	3
Oton 2. Cubotting		Height	3	1.8	1.08		Bacteria	250	500	1000

Step 2: Substitute your given values and the common ratio into the equation.

n = 9

3 1.8 1.08 Bacteria 250 500 Find the values for each variable in the Find the values for each variable in the formula. formula. $a_1 = 250$ n = 7 $a_1 = 3$ $r = \frac{500}{250} = 2$ $r = \frac{1.8}{3} = 0.6$ Use the formula for finding the nth term in a Use the formula for finding the nth term in an geometric sequence to find a_9 . geometric sequence to find a_7 .

> $a_9 = 3 \cdot (0.6)^{9-1}$ $a_9 \approx 0.0504$

 $a_7 = 250 \cdot (2)^{7-1}$ $a_{7} \approx 16,000$

Name	Date	Period_	Teacher				
	Geometric Sequences: Write an Equation for the nth Term						
Step I: Write the formula for the nth term.	Write an equation for the nth geometric sequence 21, -6	t erm in the 3, 189,	Write an equation for the nth term in the geometric sequence 162,108,72,				
Step 2: Use the given sequence to determine a_1 and r . Substitute your values into the formula.							

Find a Term in the Sequence Given a Term in the Sequence and the Common Ratio				
Step I: Write the formula for the nth term.	Find the 12 th term of a geometric sequence for which $a_5 = 17$ and $r = -0.4$.	Find the 5 th term of a geometric sequence for which $a_7 = -113$ and $r = 6$.		
Step 2: Determine which terms you are given in the sequence and use that information to substitute the values for a_n , and r into your formula.				
Step 3: Solve for a_1 .				
Step 4: Write the formula for the nth term again.				
Step 5: Substitute the values for a_1, r , and n .				
Step 6: Simplify.				

Write it Out:

What do you know about geometric sequences? You can use diagrams, examples, and words to show what you know.

Name <u>KEY</u>	Date Period	Teacher				
Geometric Sequences: Write an Equation for the nth Term						
Step I: Write the formula for the nth term.	Write an equation for the nth term in the geometric sequence 21, -63, 189,	Write an equation for the nth term in the geometric sequence 162,108,72,				
	$a_1 = 21$ and $r = \frac{(-63)}{21} = -3$	$a_1 = 162$ and $r = \frac{108}{162} = \frac{2}{3}$				
Step 2: Use the given sequence to determine a_1 and r . Substitute your values into the formula.	$a_n = a_1 \cdot r^{n-1}$ $a_n = 21 \cdot (-3)^{n-1}$	$a_n = a_1 \cdot r^{n-1}$ $a_n = 162 \cdot \left(\frac{2}{3}\right)^{n-1}$				

Find a Term in the Sequence Given a Term in the Sequence and the Common Ratio					
Step I: Write the formula for the nth term.	Find the 12 th term of a geometric sequence for which $a_5 = 17$ and $r = -0.4$.	Find the 5 th term of a geometric sequence for which $a_7 = -113$ and $r = 6$.			
Step 2: Determine which terms you are given in the sequence and use that information to substitute the values for a_n , and r into your formula.	$a_n = a_1 \cdot r^{n-1}$ $17 = a_1 \cdot (-0.4)^{5-1}$ $17 = a_1 \cdot 0.0256$ $664.0625 = a_1$	$a_n = a_1 \cdot r^{n-1}$ -113 = $a_1 \cdot (6)^{7-1}$ -113 = $a_1 \cdot 46656$ -0.0024 $\approx a_1$			
Step 3: Solve for a_1 .					
Step 4: Write the formula for the nth term again.	$a_n = a_1 \cdot r^{n-1}$ $a_{12} = 664\ 0625 \cdot (-0\ 4)^{12-1}$	$a_n = a_1 \cdot r^{n-1}$			
Step 5: Substitute the values for a_1, r , and n .	$a_{12} \approx -0.0278$	$a_5 \approx -3.1104$			
Step 6: Simplify.					

Write it Out:

What do you know about geometric sequences? You can use diagrams, examples, and words to show what you know.

- I. Cut along the solid lines of the matchbook foldable.
- 2. Cut along the solid lines of glue in definitions.
- 3. Glue the definitions on the bottom side of each matchbook flap.
- 4. Use the blank space inside of your matchbook to write examples of the formula for finding a term in a geometric sequence.

Thank you for your purchase!

Please be sure to <u>visit our store</u> for more high-quality teaching products (click on the star to follow us). If you would please take a moment to rate your purchase, we would greatly appreciate it, and you will receive TpT credits towards future purchases!

You may also enjoy these products!

Visit our website: www.applesandbananaseducation.com

A special thank you to the following for providing quality

borders, fonts, clip art, etc.

COPYRIGHT INFORMATION

©2018 Apples and Bananas Education

All content included in this product is the property of Apples and Bananas Education or its content suppliers and is protected by international copyright laws and the Digital Millennium Copyright Act (DMCA). Permission is granted for personal or classroom use only. Additional licenses may be purchased. Material may not be reproduced or published on the Internet in any form.