

Name
Date \qquad Period \qquad Teacher \qquad

Swing Problem

Samantha's dad gives her a push on the swing. At her highest point, she is 5 ft off of the ground. If he does not give her another push, each progressive swing will be 85% of the height of the previous swing. How would you find the height of the next three swings? Use this information to write a formula for the 10th swing.

Finding the Height of Each Swing	
\# of Swings	\quad Height of Swing
1	$a_{1}=5$
2	$a_{2}=$
3	$a_{3}=$
4	$a_{4}=$
10	$a_{10}=$

Name \qquad KEY \qquad Date \qquad Period \qquad Teacher

What are sequences?
They are a string of objects that follow a particular pattern.

Geometric Sequences	
What is a geometric sequence?	What is a common ratio?
A sequence in which each term after the first is found by multiplying the previous term by a constant called the common ratio.	The constant that is multiplied by each term in a geometric sequence in order to find the next term.

Swing Problem

Samantha's dad gives her a push on the swing. At her highest point, she is 5 ft off of the ground. If he does not give her another push, each progressive swing will be 85% of the height of the previous swing. How would you find the height of the next three swings? Use this information to write a formula for the loth swing.

Finding the Height of Each Swing	
\# of Swings	Height of Swing
1	$a_{1}=5$
2	$a_{2}=5(0.85)$
3	$a_{3}=5(0.85)(0.85)$
4	$a_{4}=5(0.85)(0.85)(0.85)$
10	$a_{10}=5(0.85)^{10-1}$

\qquad Teacher

Revisiting Our Geometric Sequences
Determine the common ratio for each sequence. Then, find the next term.

$1,3,9,27, \ldots$	common ratio $(r)=\ldots$	next term $=\ldots$
$40,20,10, \ldots$	common ratio $(r)=\ldots$	next term $=\ldots$
$3,6,12,24, \ldots$	common ratio $(r)=\ldots$	next term $=$

Geometric Sequences: Finding the Next Terms

Step I: Find the common ratio (r) by dividing a term in the geometric sequence by its preceding term.	Find the next 2 terms in the sequence. $\begin{array}{lll} 324 & 108 & 36 \end{array}$ What is the common ratio (r) ?	Find the next 3 terms in the sequence. $\begin{array}{lll} -3 & -15 & -75 \end{array}$ What is the common ratio (r)?
Step 2: Multiply the common ratio (r) by the term at the end of the sequence. Continue until you have the desired amount of terms.	The next 2 numbers in the sequence are... \qquad and \qquad	The next 3 numbers in the sequence are... \qquad \qquad , and \qquad

Geometric Sequences: Finding the nth Term								
The formula for finding the nth term in a geometric sequence is								
Step I: Find the common ratio (r) by dividing a term in the geometric	Assuming that the geometric sequence continues, what is the height of a bouncing ball on the $9^{\text {th }}$ bounce?				Assuming that the geometric sequence continues, how many bacteria will be in the culture at the end of 7 hours?			
sequence by its preceding term.	\# of Bounces	1	2	3	Hour(s)	1	2	3
Step 2: Substitute your	Height	3	1.8	1.08	Bacteria	250	500	1000
given values and the common ratio into the	Find the values for each variable in the formula.				Find the values for each variable in the formula.			
	$\begin{aligned} & a_{1}= \\ & n= \\ & r= \end{aligned}$				$\begin{aligned} & a_{1}= \\ & n= \\ & r= \end{aligned}$			
	Use the formula for finding the nth term in a geometric sequence to find a_{9}.				Use the formula for finding the nth term in an geometric sequence to find a_{7}.			

Name \qquad
\qquad Period \qquad Teacher

Revisiting Our Geometric Sequences
Determine the common ratio for each sequence. Then, find the next term.

$1,3,9,27, \ldots$	common ratio $(r)=3$ next term $=81$
$40,20,10, \ldots$	common ratio $(r)=\frac{1}{2}$ next term $=5$
$3,6,12,24, \ldots$	common ratio $(r)=2$ next term $=48$

Geometric Sequences: Finding the Next Terms

Step l: Find the common ratio (r) by dividing a term in the geometric sequence by its preceding term.

Step 2: Multiply the common ratio (r) by the term at the end of the sequence. Continue until you have the desired amount of terms.

Find the next 2 terms in the sequence.

$$
\begin{array}{lll}
324 & 108 & 36
\end{array}
$$

What is the common ratio (r) ?

$$
r=\frac{108}{324}=\frac{1}{3}
$$

The next 2 numbers in the sequence are...
12 and 4

Find the next 3 terms in the sequence.

$$
\begin{array}{ccc}
-3 & -15 & -75
\end{array}
$$

What is the common ratio (r) ?

$$
r=\frac{(-15)}{(-3)}=5
$$

The next 3 numbers in the sequence are...

$$
-375,-1,875 \text {, and }-9,375
$$

Geometric Sequences: Finding the nth Term								
The formula for finding the nth term in a geometric sequence is								
Step I: Find the common ratio (r) by dividing a term in the geometric	Assuming that the geometric sequence continues, what is the height of a bouncing ball on the $9^{\text {th }}$ bounce?				Assuming that the geometric sequence continues, how many bacteria will be in the culture at the end of 7 hours?			
preceding term.	\# of Bounces	1	2	3	Hour(s)	1	2	3
Step 2: Substitute your	Height	3	1.8	1.08	Bacteria	250	500	1000
given values and the common ratio into the equation.	$\begin{aligned} & a_{1}=3 \\ & n=9 \\ & r=\frac{1.8}{3}=0.6 \end{aligned}$ Use the formula for finding the nth term in a geometric sequence to find a_{9}.				Find th $\begin{aligned} & a_{1}=250 \\ & n=7 \\ & r=\frac{500}{250}= \end{aligned}$ Use the for	for for for seq $=2$ $a_{7} \approx$	var the to $)^{7-1}$ 00	in the erm in an

Name Date \qquad Period Teacher

Geometric Sequences: Write an Equation for the nth Term

Step I: Write the formula for the nth term.	Write an equation for the nth term in the geometric sequence $21,-63,189, \ldots$	Write an equation for the nth term in the geometric sequence $162,108,72, \ldots$
Step $2:$ Use the given sequence to determine a_{1} and r. Substitute your values into the formula.		

Find a Term in the Sequence Given a Term in the Sequence and the Common Ratio

Step I: Write the formula for the nth term.	Find the $12^{\text {th }}$ term of a geometric sequence for which $a_{5}=17$ and $r=-0.4$.	Find the 5 th term of a geometric sequence for which $a_{7}=-113$ and $r=6$.
Step 2: Determine which terms you are given in the sequence and use that information to substitute the values for a_{n}, and r into your formula.		

Write it Out:

What do you know about geometric sequences? You can use diagrams, examples, and words to show what you know.

Name \qquad KEY Date \qquad Period \qquad Teacher

Geometric Sequences: Write an Equation for the nth Term

Step I: Write the formula for the nth term.	Write an equation for the nth term in the geometric sequence $21,-63,189, \ldots$ $a_{1}=21 \quad \text { and } \quad r=\frac{(-63)}{21}=-3$	Write an equation for the nth term in the geometric sequence $162,108,72, \ldots$ $a_{1}=162 \quad \text { and } \quad r=\frac{108}{162}=\frac{2}{3}$
Step 2: Use the given sequence to determine a_{1} and r. Substitute your values into the formula.	$\begin{gathered} a_{n}=a_{1} \cdot r^{n-1} \\ a_{n}=21 \cdot(-3)^{n-1} \end{gathered}$	$\begin{gathered} a_{n}=a_{1} \cdot r^{n-1} \\ a_{n}=162 \cdot\left(\frac{2}{3}\right)^{n-1} \end{gathered}$

Find a Term in the Sequence Given a Term in the Sequence and the Common Ratio

Step I: Write the formula for the nth term.	Find the $12^{\text {th }}$ term of a geometric sequence for which $a_{5}=17$ and $r=-0.4$.$\begin{gathered} a_{n}=a_{1} \cdot r^{n-1} \\ 17=a_{1} \cdot(-0.4)^{5-1} \\ 17=a_{1} \cdot 0.0256 \\ 664.0625=a_{1} \\ a_{n}=a_{1} \cdot r^{n-1} \\ a_{12}=664.0625 \cdot(-0.4)^{12-1} \\ a_{12} \approx-0.0278 \end{gathered}$	Find the $5^{\text {th }}$ term of a geometric sequence for which $a_{7}=-113$ and $r=6$.$\begin{gathered} a_{n}=a_{1} \cdot r^{n-1} \\ -113=a_{1} \cdot(6)^{7-1} \\ -113=a_{1} \cdot 46656 \\ -0.0024 \approx a_{1} \\ a_{n}=a_{1} \cdot r^{n-1} \\ a_{5} \approx-0.0024 \cdot(6)^{5-1} \\ a_{5} \approx-3.1104 \end{gathered}$
Step 2: Determine which terms you are given in the		
sequence and use that information to substitute the		
values for a_{n}, and r into your formula.		
Step 3: Solve for a_{1}		
Step 4: Write the formula for the nth term again.		
Step 5: Substitute the values for a_{1}, r, and n.		
Step 6: Simplify.		

Write it Out:

What do you know about geometric sequences? You can use diagrams, examples, and words to show what you know.

Geometric Sequences

Glue the definitions under the flaps.
$\left.\begin{array}{|c|c|c|c|}\hline & & \begin{array}{c}\text { the common } \\ \text { the nth } \\ \text { term } \\ \text { in the } \\ \text { theqs } \\ \text { term } \\ \text { in the }\end{array} & \text { equals }\end{array} \begin{array}{c}\text { the } \\ \text { ratio taken to } \\ \text { the power of } \\ \text { one less than } \\ \text { the term you } \\ \text { want to find }\end{array}\right]$
I. Cut along the solid lines of the matchbook foldable.
2. Cut along the solid lines of glue in definitions.
3. Glue the definitions on the bottom side of each matchbook flap.
4. Use the blank space inside of your matchbook to write examples of the formula for finding a term in a geometric sequence.

Thank you for your purchase!
Please be sure to visit our store for more high-quality teaching products (click on the star to follow us). If you would please take a moment to rate your purchase, we would greatly appreciate it, and you will receive TpT credits towards future purchases!

You may also enjoy these products!

Visit our website: www.applesandbananaseducation.com
A special thank you to the following for providing quality borders, fonts, clip art, etc.

\square

COPYRIGHT INFORMATION
©2018 Apples and Bananas Education
All content included in this product is the property of Apples and Bananas Education or its content suppliers and is protected by international copyright laws and the Digital Millennium Copyright Act (DMCA). Permission is granted for personal or classroom use only. Additional licenses may be purchased. Material may not be reproduced or published on the Internet in any form.

