GUIDED NOTES

Graphing Exponential Functions
Name: \qquad Period: \qquad
OBJECTIVE: I can identify the types of exponential functions, as well as evaluate and graph them.
Exponential functions have the form:
; where
, and x is any real number.

Domain:
Range:
There are two basic types of exponential functions...

This type is a function.
$f(x)=b^{x}$

Where

This type is a function.
$f(x)=b^{x}$
Where

To graph exponential functions, make a table, plot the points and connect them with a smooth curve.

$$
f(x)=2^{x}
$$

x		$f(x)$
-2		
-1		
0		
1		
2		
3		

x-intercept: $\quad y$-intercept:
$f(x)=4^{x}$

$$
f(x)=(3) 2^{x}
$$

x		$f(x)$
-2		
-1		
0		
1		
2		
3		

x			$f(x)$
-2			
-1			
0			
1			
2			
3			

x-intercept: $\quad y$-intercept:

x-intercept: $\quad y$-intercept:

The equation $\boldsymbol{f}(\boldsymbol{x})=(\boldsymbol{a}) \boldsymbol{b}^{\boldsymbol{x}-\boldsymbol{h}}+\boldsymbol{k}$ is the translation function that helps us understand how changing values impacts the resulting graph.
\mathbf{h} tells us about horizontal movement.

If h is positive...
If h is negative...
a tells us about stretching, reflecting, and compressing.
If $\mathrm{a}<0$...
If $\mathrm{a}>1$...
If $0<a<1$...
\mathbf{K} tells us about vertical movement.

If \mathbf{k} is positive...
If k is negative...
Given the graphed parent function $\boldsymbol{f}(\boldsymbol{x})=\mathbf{2}^{\boldsymbol{x}}$, perform the following translations.
$f(x)=2^{x-2}$
$f(x)=2^{x}-2$
$f(x)=(-1) 2^{x}$

$f(x)=2^{x+2}$

$f(x)=2^{x}+3$
$f(x)=(-2) 2^{x}$

